首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65778篇
  免费   7036篇
  国内免费   3572篇
电工技术   3984篇
综合类   4094篇
化学工业   21202篇
金属工艺   7859篇
机械仪表   2219篇
建筑科学   4635篇
矿业工程   1100篇
能源动力   5325篇
轻工业   4634篇
水利工程   642篇
石油天然气   2923篇
武器工业   812篇
无线电   3910篇
一般工业技术   8563篇
冶金工业   2667篇
原子能技术   943篇
自动化技术   874篇
  2024年   166篇
  2023年   1322篇
  2022年   1787篇
  2021年   2375篇
  2020年   2522篇
  2019年   2327篇
  2018年   2128篇
  2017年   2529篇
  2016年   2455篇
  2015年   2439篇
  2014年   3584篇
  2013年   4186篇
  2012年   4287篇
  2011年   4697篇
  2010年   3500篇
  2009年   3856篇
  2008年   3303篇
  2007年   4176篇
  2006年   3947篇
  2005年   3165篇
  2004年   2742篇
  2003年   2279篇
  2002年   2038篇
  2001年   1818篇
  2000年   1439篇
  1999年   1021篇
  1998年   909篇
  1997年   806篇
  1996年   748篇
  1995年   578篇
  1994年   484篇
  1993年   436篇
  1992年   405篇
  1991年   367篇
  1990年   316篇
  1989年   223篇
  1988年   168篇
  1987年   120篇
  1986年   111篇
  1985年   111篇
  1984年   106篇
  1983年   65篇
  1982年   86篇
  1981年   59篇
  1980年   48篇
  1979年   24篇
  1978年   26篇
  1977年   20篇
  1975年   23篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
12.
Zinc cadmium sulfide (ZnxCd1?xS) is a good photocatalyst for hydrogen evolution reaction (HER), but an optimum x (xm) at which a maximum HER rate is reached varies from one report to another. In this work, we examine the effect of light wavelength, not only for the HER to H2 in the presence of Na2S and Na2SO3, but also for oxygen reduction reaction (ORR) without addition of any sacrifices. For the HER under a 365 and 420 nm LED lamp, the xm were 0.9 and 0.7, respectively. For the HER under a 330 and 395–515 nm cut-off xenon lamp, the xm were 0.7 and 0.5, respectively. For the ORR under a 420 nm cut-off halogen lamp, a maximum production of H2O2 was observed at x = 0.3. Furthermore, after 4% ZnCo2O4 loading, ZnxCd1?xS had an increased activity and stability, either for the HER or for the ORR. Through a (photo)electrochemical measurement, it is proposed that the photocatalytic activity of ZnxCd1?xS is determined by its light absorptivity and electron reactivity. The improved performance of n-type ZnxCd1?xS by p-type ZnCo2O4 is due to formation of a p-n junction, promoting the HER (ORR) on ZnxCd1?xS, and the sulfide (water) oxidation on ZnCo2O4. This work highlights that ZnxCd1-xS is a promising photocatalyst for H2 and H2O2 production, respectively.  相似文献   
13.
The reaction of H2 and O2 to water are studied over a Ag–Pd/TiO2 anatase catalyst, under dark and photo-irradiation conditions in the gas and liquid phases. The catalyst consisted of metal particles of mean size of ca.1 nm dispersed over 10–15 nm TiO2 particles. Kinetic parameters including order of reaction (n), rate constant (k), and activation energy (Ea), were evaluated. Ea for the thermal reaction was found to be 49-47 kJ mol?1. The oxidation reaction rate constant was found to be ca. 3 times higher in the presence of photons when compared to dark reaction at room temperature. The overall quantum yield of the reaction in the slurry phase was found to be 0.09. Considering the number of metal particles on TiO2, the photon yield per metal particle was found to be 0.16. A possible explanation of the changes in kinetics with respect to experimental conditions is given.  相似文献   
14.
Developing efficient, stable and ideal urea oxide (UOR) electrocatalyst is key to produce green hydrogen in an economical way. Herein, Ru doped three dimensional (3D) porous Ni3N spheres, with tannic acid (TA) and urea as the carbon and nitrogen resources, is synthesized via hydrothermal and low-temperature treated process (Ru–Ni3N@NC). The porous nanostructure of Ni3N and the nickel foam provide abundant active sites and channel during catalytic process. Moreover, Ru doping and rich defects favor to boost the reaction kinetics by optimizing the adsorption/desorption or dissociation of intermediates and reactants. The above advantages enable Ru–Ni3N@NC to have good bifunctional catalytic performance in alkaline media. Only 43 and 270 mV overpotentials are required for hydrogen evolution (HER) and oxygen evolution (OER) reactions to drive a current of 10 mA cm?2. Moreover, it also showed good electrocatalytic performance in neutral and alkaline seawater electrolytes for HER with 134 mV to drive 10 mA cm?2 and 83 mV to drive 100 mA cm?2, respectively. Remarkably, the as-designed Ru–Ni3N@NC also owns extraordinary catalytic activity and stability toward UOR. Moreover, using the synthesized Ru–Ni3N@NC nanomaterial as the anode and cathode of urea assisted water decomposition, a small potential of 1.41 V was required to reach 10 mA cm?2. It can also be powered by sustainable energy sources such as wind, solar and thermal energies. In order to make better use of the earth's abundant resources, this work provides a new way to develop multi-functional green electrocatalysts.  相似文献   
15.
This study investigated the effect of 5 freeze–thaw cycles (freezing at −18°C for 12 h and then thawing at 4°C for approximately 12 h) on the meat quality, proximate composition, water distribution and microstructure of bovine rumen smooth muscle (BSM). As the number of freeze–thaw cycles increased, BSM pH, shear force, water content and protein content decreased by 3.06%, 35.50%, 14.49% and 21.11%, respectively, whereas BSM thawing loss, cooking loss, pressing loss, total aerobic count (TAC), ash content and fat content increased by 108.12%, 47.75%, 78.33%, 90.99%, 105% and 35.20%, respectively. The freeze–thaw cycles resulted in greater protein and lipid oxidation, as evidenced by a 36.46% reduction in the sulfhydryl content and a 209.06% and 338.46% increase in the carbonyl and malondialdehyde contents, respectively. Ice crystal formation disrupted the structural integrity of the muscle tissue. Low-field nuclear magnetic resonance results showed that the freeze–thaw cycles prolonged the relaxation times (T2b, T21 and T22), indicating that immobile water shifted to free water, and consequently, free water mobility increased. After 3 freeze–thaw cycles, the decline in shear force slowed, the increase in thawing loss became accelerated, and the TAC approached the domain value (6 log colony-forming units/g). Therefore, the number of freeze–thaw cycles of smooth muscle during transport, storage and distribution should be controlled to 3 or fewer. The current results provide a theoretical basis and data support for the further utilisation and culinary processing of smooth muscle.  相似文献   
16.
The computational fluid dynamics (CFD) and kinetic-based moment methods coupled approach is adopted to simulate the bulk copolymerization of styrene–acrylonitrile (SAN) in a stirred tank reactor. Numerical simulations are carried out to investigate the impacts of impeller speed, monomer ratio, initiator ratio, and initial reaction temperature on the copolymerization process and product properties. Particularly, the Chaos theory is selected as a criterion for evaluating the occurrence of the thermal runaway. The Flory's and Stockmayer's distributions are employed to calculate chain length distribution and copolymer composition distribution of copolymer. The simulation results highlight that the appearance of thermal runaway can be postponed by properly increasing the rotation speed, decreasing the initiator loadings, initial acrylonitrile contents and initial reactor temperature. Furthermore, significant differences exist in the product properties that predicted by the ideal and non-ideal models, which demonstrates that the temperature heterogeneity plays a crucial role in SAN copolymerization. This study could offer references for the safe operation and design of polymerization processes.  相似文献   
17.
The exploration of the high thermal stability near-infrared (NIR) phosphors is significantly crucial for the development of plant lighting. However, NIR phosphors suffer from the poor chemical and thermal stability, which severely limits their long-term operation. Here, the successful improvement of luminous intensity (149.5%) and thermal stability at 423 K of Zn3Ga2GeO8 (ZGGO): Cr3+ phosphors is achieved for the introduction of Al3+ ions into the host. The release of carriers in deep traps inhibits the emission loss for the thermal disturbance. Furthermore, an NIR light emitting diodes (LEDs) lamp is explored by combining the optimized Zn3Ga1.1675Al0.8GeO8: 0.0325Cr3+ phosphors with a commercial 460 nm blue chip, and the emission band can match well with the absorption bands of photosynthetic pigments and the phytochrome (PR and PFR) of plants. The explored LEDs lamp further determines the growth and the pheromone content of the involved plants for the participation of the NIR emission originated from Cr3+ ions. Our work provides a promising NIR lamp as plant light with improved thermal stability for long-term operation.  相似文献   
18.
《Ceramics International》2022,48(20):29959-29966
High-purity SiC ceramic devices are applied in semiconductor industry owing to their outstanding properties. Nevertheless, it is difficult to densify SiC ceramics without any sintering additive even by HP sintering. In this work, high-purity and dense SiC ceramics were fabricated by HP sintering with very low amounts of sintering aids. Residual B content was only 556 ppm and relative density was more than 99.5%. Furthermore, thermal conductivity of as-prepared SiC ceramics was improved from 155 W m?1 K?1 to 167 W m?1 K?1 by increasing holding time and their plasma corrosion resistance was promoted in the meantime. The as-prepared high-purity SiC ceramics have broad application prospects in the field of semiconductor industry.  相似文献   
19.
Based on the new process named “Combination Method” for metallurgy and separation of Baotou mixed rare earth concentrate (BMREC), the aim of this paper is to clearly elucidate the phase change behavior of BMREC without additives during oxidative roasting at 450–800 °C. The results indicate that the bastnaesite in BMREC is decomposed at 450–550 °C, the weight loss is about 10.3 wt%, and the activation energy (E) is 144 kJ/mol. The bastnaesite in BMREC is decomposed into rare earth fluoride, rare earth oxides (La2O3, Ce7O12, Pr6O11 and Nd2O3), and CO2, particularly, with the increase of roasting temperature, bastnaesite in BMREC is more completely decomposed into LaF3, which causes a decrease in leaching rate of La during the HCl leaching process. Additionally, the maximum cerium oxidation efficiency reaches about 60 wt% when the roasting temperature is equal to or above 500 °C, and the oxidation reaction rate of cerium increases with the increasing roasting temperature.  相似文献   
20.
Metal organic frameworks (MOFs) derivatives represented by quasi-MOFs have excellent physical and chemical properties and can be applied for the catalytic combustion of volatile organic compounds (VOCs). In this work, Pd/quasi-Ce-BTC synthesized by simple one-step N2 pyrolysis was applied to the oxidation of toluene, showing excellent toluene catalytic activity (T90 = 175 °C, 30000 mL/(g·h)). Microscopic analyses indicate the formation and interaction of a carbon matrix composite quasi-MOF structure interface. The results show that the amorphous carbon matrix formed during the partial pyrolysis of Ce-BTC significantly improves the adsorption and activation capacity of toluene in the reaction, and constructs a reductive system to maintain high concentrations of Ce3+ and Pd0, which can facilitate the activation and utilization of oxygen in reaction. Quasi in-situ XPS proves that carbon matrix is indirectly involved in the activation and storage of oxygen, and Pd0 is the crucial active site for the activation of oxygen. Stability and water resistance tests display good stability of Pd/quasi-Ce-BTC. This work provides a potential method for designing quasi-MOF catalysts towards VOCs effective abatement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号